Epigenetic adaptation to drought and salinity in crop plants

Document Type : Review paper

Authors

College of Agriculture, Isfahan University of Technology

Abstract

The severe impact of drought and salinity on plant productivity presents a significant threat to worldwide food security. Plants exhibit the capacity to sense stimuli in their environment and adjust defense mechanisms through diverse regulatory networks to cope with abiotic stress. The complexities of drought and salinity tolerances can be deconstructed into contributing factors and mechanisms, classified under two categories: genetics and epigenetics. Epigenetic mechanisms play a role in partially attributing crop adaptation to the most formidable drought and salinity stresses. Plants respond to stress in part by undergoing stable alterations in gene expression, a process that involves the physical "marking" of DNA or its associated proteins, commonly called epigenetics. Plants utilize various epigenetic mechanisms to refine gene expression, vital for adaptation and phenotypic plasticity. These include DNA methylation, histone modifications, chromatin remodeling, epitranscriptomics, and gene silencing mediated by small RNAs. Notably, epigenetic modifications can be inherited or erased. Enhanced knowledge of epigenetics complements genetics and will aid in developing strategies to integrate them into crop improvement programs aimed at addressing adaptation to abiotic stress. This review highlights the latest and noteworthy findings regarding crop epigenetic responses to abiotic stress signals, particularly those pertinent to drought and salinity tolerance.

Keywords

Main Subjects

Arzani, A., and Ashraf, M. (2016). Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35(3): 146-189.
Arzani, A., Kumar, S., and Mansour, M.M.F. (2023). Salt tolerance in plants: molecular and functional adaptations. Front Plant Sci 14: 1280788.
Bai, Q., Wang, X., Chen, X., Shi, G., Liu, Z., Guo, C., and Xiao, K. (2018). Wheat miRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi deprivation and salt stress via modulating stress-associated physiological processes. Front Plant Sci 9: 499.
Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature 447(7143): 407-412.
Bewick, A.J., and Schmitz, R.J. (2017). Gene body DNA methylation in plants. Front Plant Sci 36: 103-110.
Bhadouriya, S.L., Mehrotra, S., Basantani, M.K., Loake, G.J., and Mehrotra, R. (2021). Role of chromatin architecture in plant stress responses: an update. Front Plant Sci 11: 603380.
Borges, F., and Martienssen, R.A. (2015). The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16(12): 727-741.
Boycheva, I., Vassileva, V., and Iantcheva, A. (2014). Histone acetyltransferases in plant development and plasticity. Curr Genomics 15(1): 28.
Bruce, T.J., Matthes, M.C., Napier, J.A., and Pickett, J.A. (2007). Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173(6): 603-608.
Cadavid, I.C., da Fonseca, G.C., and Margis, R. (2020). HDAC inhibitor affects soybean miRNA482bd expression under salt and osmotic stress. J Plant Physiol 253: 153261.
Çakır, Ö., Arıkan, B., Karpuz, B., and Turgut-Kara, N. (2021). Expression analysis of miRNAs and their targets related to salt stress in Solanum lycopersicum H-2274. Biotechnol Biotechnol Equip 35(1): 275-282.
Chen, H., Feng, H., Zhang, X., Zhang, C., Wang, T., and Dong, J. (2019). An Arabidopsis E3 ligase HUB 2 increases histone H2B monoubiquitination and enhances drought tolerance in transgenic cotton. Plant Biotechnol J 17(3): 556-568.
Chen, K., Tang, W.-S., Zhou, Y.-B., Xu, Z.-S., Chen, J., Ma, Y.-Z., Chen, M., and Li, H.-Y. (2020). Overexpression of GmUBC9 gene enhances plant drought resistance and affects flowering time via histone H2B monoubiquitination. Front Plant Sci 11: 555794.
Colak, İ., and Karadayi, G. (2022). Comparison of the DNA methylation and expression changes on some cadmium-induced genes in bread wheat exposed to cadmium (Cd) accumulation in the soil. Preprint available at Research Square. doi: [https://doi.org/10.21203/rs.3.rs-1718779/v1].
Deng, F., Zhang, X., Wang, W., Yuan, R., and Shen, F. (2018). Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC Plant Biol 18: 1-14.
Ding, Y., Avramova, Z., and Fromm, M. (2011). The Arabidopsis trithorax‐like factor ATX1 functions in dehydration stress responses via ABA‐dependent and ABA‐independent pathways. Plant J 66(5): 735-744.
Duan, H., Li, J., Zhu, Y., Jia, W., Wang, H., Jiang, L., and Zhou, Y. (2020). Responsive changes of DNA methylation in wheat (Triticum aestivum) under water deficit. Sci Rep 10(1): 7938.
Eichten, S.R., and Springer, N.M. (2015). Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress. Front Plant Sci 6: 308.
Eom, S.H., and Hyun, T.K. (2018). Histone acetyltransferases (HATs) in Chinese cabbage: insights from histone H3 acetylation and expression profiling of HATs in response to abiotic stresses. J Am Soc Hort Sci 143(4): 296-303.
Felsenfeld, G. (2014). A brief history of epigenetics. Cold Spring Harb Perspect Biol 6(1): a018200.
Feng, X.J., Li, J.R., Qi, S.L., Lin, Q.F., Jin, J.B., and Hua, X.J. (2016). Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proc Natl Acad Sci USA 113(51): E8335-E8343.
Ferdous, J., Hussain, S.S., and Shi, B.J. (2015). Role of micro RNA s in plant drought tolerance. Plant Biotechnol J 13(3): 293-305.
Forestan, C., Farinati, S., Zambelli, F., Pavesi, G., Rossi, V., and Varotto, S. (2020). Epigenetic signatures of stress adaptation and flowering regulation in response to extended drought and recovery in Zea mays. Plant Cell Environ 43(1): 55-75.
Fu, R., Zhang, M., Zhao, Y., He, X., Ding, C., Wang, S., Feng, Y., Song, X., Li, P., and Wang, B. (2017). Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Front Plant Sci 8: 864.
Gallusci, P., Agius, D.R., Moschou, P.N., Dobránszki, J., Kaiserli, E., and Martinelli, F. (2023). Deep inside the epigenetic memories of stressed plants. Trend Plant Sci 28(2): 142-153.
Ganie, S.A., Dey, N., and Mondal, T.K. (2016). Promoter methylation regulates the abundance of osa-miR393a in contrasting rice genotypes under salinity stress. Funct Integr Genomics 16: 1-11.
Gayacharan, and Joel, A.J. (2013). Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol  Molecular Biol Plant 19: 379-387.
Hämälä, T., Ning, W., Kuittinen, H., Aryamanesh, N., and Savolainen, O. (2022). Environmental response in gene expression and DNA methylation reveals factors influencing the adaptive potential of Arabidopsis lyrata. eLife 11: e83115.
He, M.-Y., Ren, T.X., Jin, Z.D., Deng, L., Liu, H.J., Cheng, Y.Y., Li, Z.Y., Liu, X.X., Yang, Y., and Chang, H. (2023). Precise analysis of potassium isotopic composition in plant materials by multi-collector inductively coupled plasma mass spectrometry. Spectrochim Acta Part B At Spectrosc 209: 106781.
Hosseinpour, A., Ilhan, E., Özkan, G., Öztürk, H.İ., Haliloglu, K., and Cinisli, K.T. (2022). Plant growth-promoting bacteria (PGPBs) and copper (II) oxide (CuO) nanoparticle ameliorates DNA damage and DNA Methylation in wheat (Triticum aestivum L.) exposed to NaCl stress. J Plant Biochem. Biotechnol 31(4): 751-764.
Hou, J., Ren, R., Xiao, H., Chen, Z., Yu, J., Zhang, H., Shi, Q., Hou, H., He, S., and Li, L. (2021). Characteristic and evolution of HAT and HDAC genes in Gramineae genomes and their expression analysis under diverse stress in Oryza sativa. Planta 253: 1-22.
Houben, A., Demidov, D., Caperta, A.D., Karimi, R., Agueci, F., and Vlasenko, L. (2007). Phosphorylation of histone H3 in plants—a dynamic affair. Biochim Biophys Acta 1769(5-6): 308-315.
Hu, J., Cai, J., Park, S.J., Lee, K., Li, Y., Chen, Y., Yun, J.Y., Xu, T., and Kang, H. (2021). N 6‐Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. Plant J 106(6): 1759-1775.
Hu, L., Li, N., Xu, C., Zhong, S., Lin, X., Yang, J., Zhou, T., Yuliang, A., Wu, Y., and Chen, Y.-R. (2014). Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc Natl Acad Sci USA 111(29): 10642-10647.
Hu, Y., Lu, Y., Zhao, Y., and Zhou, D.-X. (2019). Histone acetylation dynamics integrates metabolic activity to regulate plant response to stress. Front Plant Sci 10: 1236.
Jones, P.A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7): 484-492.
Junaid, A., Singh, N.K., and Gaikwad, K. (2022). Evolutionary fates of gene‐body methylation and its divergent association with gene expression in pigeonpea. Plant Genome 15(3): e20207.
Kim, J.-H. (2019). Chromatin remodeling and epigenetic regulation in plant DNA damage repair. Int J Mol Sci 20(17): 4093.
Kim, J.-M., To, T.K., Ishida, J., Morosawa, T., Kawashima, M., Matsui, A., Toyoda, T., Kimura, H., Shinozaki, K., and Seki, M. (2008). Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49(10): 1580-1588.
Kou, S., Gu, Q., Duan, L., Liu, G., Yuan, P., Li, H., Wu, Z., Liu, W., Huang, P., and Liu, L. (2022). Genome-wide bisulphite sequencing uncovered the contribution of DNA methylation to rice short-term drought memory formation. J Plant Growth Regul 41(7): 2903-2917.
Kumar, S., Beena, A.S., Awana, M., and Singh, A. (2017). Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes. DNA Cel Biol 36(4): 283-294.
Kumar, S., Chinnusamy, V., and Mohapatra, T. (2018). Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front Genet 9: 640.
Kumar, S., and Mohapatra, T. (2021). Dynamics of DNA methylation and its functions in plant growth and development. Front Plant Sci 12: 596236.
Kumar, S., Seem, K., Kumar, S., Singh, A., Krishnan, S.G., and Mohapatra, T. (2024). DNA methylome analysis provides insights into gene regulatory mechanism for better performance of rice under fluctuating environmental conditions: epigenomics of adaptive plasticity. Planta 259(1): 4.
Lämke, J., and Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18(1): 1-11.
Li, H., Liu, H., Pei, X., Chen, H., Li, X., Wang, J., and Wang, C. (2021a). Comparative genome-wide analysis and expression profiling of histone acetyltransferases and histone deacetylases involved in the response to drought in wheat. J Plant Growth Regul: 1-14.
Li, H., Yan, S., Zhao, L., Tan, J., Zhang, Q., Gao, F., Wang, P., Hou, H., and Li, L. (2014). Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 14: 1-14.
Li, J., Jia, W., Wang, H., Zhu, Y., Duan, Z., Jiang, L., Zhou, Y., and Duan, H. (2020). Morpho-physiological adaptation and DNA methylation of wheat seedlings under osmotic stress. Crop Pasture Sci 71(4): 349-355.
Li, S., He, X., Gao, Y., Zhou, C., Chiang, V.L., and Li, W. (2021b). Histone acetylation changes in plant response to drought stress. Genes 12(9): 1409.
Liang, Z., Shen, L., Cui, X., Bao, S., Geng, Y., Yu, G., Liang, F., Xie, S., Lu, T., and Gu, X. (2018). DNA N6-adenine methylation in Arabidopsis thaliana. Develop Cell 45(3): 406-416. e403.
Ma, X., Lv, S., Zhang, C., and Yang, C. (2013). Histone deacetylases and their functions in plants. Plant Cell Rep 32: 465-478.
Ma, X., Zhang, B., Liu, C., Tong, B., Guan, T., and Xia, D. (2017). Expression of a populus histone deacetylase gene 84KHDA903 in tobacco enhances drought tolerance. Plant Sci 265: 1-11.
Ma, X., Zhao, F., and Zhou, B. (2022). The characters of non-coding RNAs and their biological roles in plant development and abiotic stress response. Int J Mol Sci 23(8): 4124.
Maeji, H., and Nishimura, T. (2018). "Epigenetic mechanisms in plants," in Adv Bot Res. Elsevier), 21-47.
March, E., and Farrona, S. (2018). Plant deubiquitinases and their role in the control of gene expression through modification of histones. Front Plant Sci 8: 2274.
Mladenov, V., Fotopoulos, V., Kaiserli, E., Karalija, E., Maury, S., Baranek, M., Segal, N.a., Testillano, P.S., Vassileva, V., and Pinto, G. (2021). Deciphering the epigenetic alphabet involved in transgenerational stress memory in crops. Int J Mol Sci 22(13): 7118.
Muyle, A., and Gaut, B.S. (2019). Loss of gene body methylation in Eutrema salsugineum is associated with reduced gene expression. Mol Biol Evol 36(1): 155-158.
Nguyen, N.H., and Cheong, J.-J. (2018). H2A. Z-containing nucleosomes are evicted to activate AtMYB44 transcription in response to salt stress. Biochem Biophys Res Commun 499(4): 1039-1043.
Nguyen, N.H., Jung, C., and Cheong, J.-J. (2019). Chromatin remodeling for the transcription of type 2C protein phosphatase genes in response to salt stress. Plant Physiol Biochem 141: 325-331.
Ni, Z., Hu, Z., Jiang, Q., and Zhang, H. (2013). GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82: 113-129.
Niederhuth, C.E., and Schmitz, R.J. (2017). Putting DNA methylation in context: from genomes to gene expression in plants. Biochim Biophys Acta 1860(1): 149-156.
Noshay, J.M., and Springer, N.M. (2021). Stories that can’t be told by SNPs; DNA methylation variation in plant populations. Curr Opin Plant Biol 61: 101989.
Okitsu, C.Y., and Hsieh, C.-L. (2007). DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 27(7): 2746-2757.
Pandey, G., Sharma, N., Pankaj Sahu, P., and Prasad, M. (2016). Chromatin-based epigenetic regulation of plant abiotic stress response. Curr Genom 17(6): 490-498.
Papaefthimiou, D., Likotrafiti, E., Kapazoglou, A., Bladenopoulos, K., and Tsaftaris, A. (2010). Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Biochem 48(2-3): 98-107.
Parmar, S., Gharat, S.A., Tagirasa, R., Chandra, T., Behera, L., Dash, S.K., and Shaw, B.P. (2020). Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 15(4): e0230958.
Paul, A., Dasgupta, P., Roy, D., and Chaudhuri, S. (2017). Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. Plant Mol Biol 95: 63-88.
Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C.W., Rodriguez, L., Belda-Palazon, B., Wagner, D., and Rodriguez, P.L. (2016). A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol Plant 9(1): 136-147.
Quadrana, L., and Colot, V. (2016). Plant transgenerational epigenetics. Annu Rev Genet 50: 467-491.
Rajkumar, M.S., Shankar, R., Garg, R., and Jain, M. (2020). Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics 112(5): 3537-3548.
Ramirez‐Prado, J.S., Latrasse, D., Rodriguez‐Granados, N.Y., Huang, Y., Manza‐Mianza, D., Brik‐Chaouche, R., Jaouannet, M., Citerne, S., Bendahmane, A., and Hirt, H. (2019). The Polycomb protein LHP 1 regulates Arabidopsis thaliana stress responses through the repression of the MYC 2‐dependent branch of immunity. Plant J 100(6): 1118-1131.
Reddy, A.S., Marquez, Y., Kalyna, M., and Barta, A. (2013). Complexity of the alternative splicing landscape in plants. Plant Cell 25(10): 3657-3683.
Sedgwick, B., Bates, P.A., Paik, J., Jacobs, S.C., and Lindahl, T. (2007). Repair of alkylated DNA: recent advances. DNA Repair 6(4): 429-442.
Shams, M., Yildirim, E., Arslan, E., and Agar, G. (2020). Salinity induced alteration in DNA methylation pattern, enzyme activity, nutrient uptake and H 2 O 2 content in pepper (Capsicum annuum L.) cultivars. Acta Physiol Plant 42: 1-12.
Shoaib, Y., Usman, B., Kang, H., and Jung, K.-H. (2022). Epitranscriptomics: An additional regulatory layer in plants’ development and stress response. Plants 11(8): 1033.
Singroha, G., Kumar, S., Gupta, O.P., Singh, G.P., and Sharma, P. (2022). Uncovering the epigenetic marks involved in mediating salt stress tolerance in plants. Front Genet 13: 811732.
Skorupa, M., Szczepanek, J., Mazur, J., Domagalski, K., Tretyn, A., and Tyburski, J. (2021). Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. PLoS One 16(5): e0251675.
Song, X., Li, Y., Cao, X., and Qi, Y. (2019). MicroRNAs and their regulatory roles in plant–environment interactions. Annu Rev Plant Biol 70: 489-525.
Song, Y., Ji, D., Li, S., Wang, P., Li, Q., and Xiang, F. (2012). The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PloS One 7(7): e41274.
Su, Y., Bai, X., Yang, W., Wang, W., Chen, Z., Ma, J., and Ma, T. (2018). Single-base-resolution methylomes of Populus euphratica reveal the association between DNA methylation and salt stress. Tree Genet Genom 14: 1-11.
Suji, K., and Joel, A.J. (2010). An epigenetic change in rice cultivars under water stress conditions. Elec J Plant Breed 1(4): 1142-1143.
Sun, C., Ali, K., Yan, K., Fiaz, S., Dormatey, R., Bi, Z., and Bai, J. (2021). Exploration of epigenetics for improvement of drought and other stress resistance in crops: A review. Plants 10(6): 1226. doi: https://doi.org/10.3390/plants10061226.
Sun, L., Miao, X., Cui, J., Deng, J., Wang, X., Wang, Y., Zhang, Y., Gao, S., and Yang, K. (2018). Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across different salt stress in Maize (Zea mays L.). Euphytica 214: 1-15.
Sun, L., Song, G., Guo, W., Wang, W., Zhao, H., Gao, T., Lv, Q., Yang, X., Xu, F., and Dong, Y. (2019). Dynamic changes in genome-wide histone3 lysine27 trimethylation and gene expression of soybean roots in response to salt stress. Front Plant Sci 10: 1031.
Sun, Y., Zhao, J., Li, X., and Li, Y. (2020). E2 conjugases UBC1 and UBC2 regulate MYB42‐mediated SOS pathway in response to salt stress in Arabidopsis. New Phytol 227(2): 455-472.
Sunkar, R., and Zhu, J.-K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8): 2001-2019.
Sura, W., Kabza, M., Karlowski, W.M., Bieluszewski, T., Kus-Slowinska, M., Pawełoszek, Ł., Sadowski, J., and Ziolkowski, P.A. (2017). Dual role of the histone variant H2A. Z in transcriptional regulation of stress-response genes. Plant Cell 29(4): 791-807.
Tan, S., Gao, L., Li, T., and Chen, L. (2019). Phylogenetic and expression analysis of histone acetyltransferases in Brachypodium distachyon. Genomics 111(6): 1966-1976.
Thieme, C.J., Rojas-Triana, M., Stecyk, E., Schudoma, C., Zhang, W., Yang, L., Miñambres, M., Walther, D., Schulze, W.X., and Paz-Ares, J. (2015). Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plant 1(4): 1-9.
Tian, C., Zuo, Z., and Qiu, J.-L. (2015). Identification and characterization of ABA-responsive microRNAs in rice. Genet Genom 42(7): 393-402.
Tonosaki, K., Fujimoto, R., Dennis, E.S., Raboy, V., and Osabe, K. (2022). Will epigenetics be a key player in crop breeding? Front Plant Sci 13: 958350.
Ueda, M., and Seki, M. (2020). Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol 182(1): 15-26.
Ullah, F., Xu, Q., Zhao, Y., and Zhou, D.X. (2021). Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice. J Integr Plant Biol 63(3): 451-467.
Walter, J., Jentsch, A., Beierkuhnlein, C., and Kreyling, J. (2013). Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot 94: 3-8.
Wang, L., and Qiao, H. (2020). Chromatin regulation in plant hormone and plant stress responses. Curr Opin Plant Biol 57: 164-170.
Wang, Q., Xu, J., Pu, X., Lv, H., Liu, Y., Ma, H., Wu, F., Wang, Q., Feng, X., and Liu, T. (2021). Maize DNA methylation in response to drought stress is involved in target gene expression and alternative splicing. Int J Mol Sci 22(15): 8285.
Wang, T., Xing, J., Liu, Z., Zheng, M., Yao, Y., Hu, Z., Peng, H., Xin, M., Zhou, D., and Ni, Z. (2019). Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. J Exp Bot 70(21): 6337-6348.
Wang, X., Hu, L., Wang, X., Li, N., Xu, C., Gong, L., and Liu, B. (2016). DNA methylation affects gene alternative splicing in plants: an example from rice. Mol Plant 9(2): 305-307.
Wang, Y., Du, F., Li, Y., Wang, J., Zhao, X., Li, Z., Xu, J., Wang, W., and Fu, B. (2022). Global N6-methyladenosine profiling revealed the tissue-specific epitranscriptomic regulation of rice responses to salt stress. Int J Mol Sci 23(4): 2091.
Wibowo, A., Becker, C., Marconi, G., Durr, J., Price, J., Hagmann, J., Papareddy, R., Putra, H., Kageyama, J., and Becker, J. (2016). Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife 5: e13546.
Yang, L., Perrera, V., Saplaoura, E., Apelt, F., Bahin, M., Kramdi, A., Olas, J., Mueller-Roeber, B., Sokolowska, E., and Zhang, W. (2019). m5C methylation guides systemic transport of messenger RNA over graft junctions in plants. Current Biol 29(15): 2465-2476. e2465.
Yang, Z., Zhu, P., Kang, H., Liu, L., Cao, Q., Sun, J., Dong, T., Zhu, M., Li, Z., and Xu, T. (2020). High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genom 21: 1-16.
Younis, A., Siddique, M.I., Kim, C.-K., and Lim, K.-B. (2014). RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci 10(10): 1150.
Zhang, Q., Liang, Z., Cui, X., Ji, C., Li, Y., Zhang, P., Liu, J., Riaz, A., Yao, P., and Liu, M. (2018). N6-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression, plant development, and stress responses. Mol Plant 11(12): 1492-1508.
Zhang, W., Wang, N., Yang, J., Guo, H., Liu, Z., Zheng, X., Li, S., and Xiang, F. (2020). The salt-induced transcription factor GmMYB84 confers salinity tolerance in soybean. Plant Sci 291: 110326.
Zhang, X., Dong, J., Deng, F., Wang, W., Cheng, Y., Song, L., Hu, M., Shen, J., Xu, Q., and Shen, F. (2019). The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biol 19: 1-16.
Zhang, Z., Zhang, S., Zhang, Y., Wang, X., Li, D., Li, Q., Yue, M., Li, Q., Zhang, Y.-e., and Xu, Y. (2011). Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23(1): 396-411.
Zheng, H., Sun, X., Li, J., Song, Y., Song, J., Wang, F., Liu, L., Zhang, X., and Sui, N. (2021). Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sweet sorghum. Plant Sci 304: 110801.
Zhou, C., Wang, C., Liu, H., Zhou, Q., Liu, Q., Guo, Y., Peng, T., Song, J., Zhang, J., and Chen, L. (2018). Identification and analysis of adenine N 6-methylation sites in the rice genome. Nat Plants 4(8): 554-563.
Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1): 247-273.
Zhu, N., Cheng, S., Liu, X., Du, H., Dai, M., Zhou, D.-X., Yang, W., and Zhao, Y. (2015). The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236: 146-156.
Zong, W., Zhong, X., You, J., and Xiong, L. (2013). Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol 81: 175-188.
Volume 11, Issue 2
June 2023
Pages 1-16
  • Receive Date: 26 January 2024
  • Revise Date: 31 January 2024
  • Accept Date: 31 January 2024
  • First Publish Date: 31 January 2024