Rapid and high throughput regeneration in fennel (Foeniculum vulgare Mill.) from embryo explants

Document Type : Original research paper

Authors

1 Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Iran

2 Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, Iran

Abstract

Callus induction and regeneration of fennel from embryo explants were stabilized in the presence of cefotaxime antibiotic and different plant growth regulators (PGRs). The experiments were conducted under a factorial experiment, based on a completely randomized design (CRD). Genotypes; Fasa, Meshkinshar and Hajiabad were applied under different concentration of cefotaxime (0 and 100 mg l-1), NAA (0 and 0.2 mg l-1), IAA (0 and 0.4 mg l-1) and BAP (0, 0.5 and 1mg l-1). Regeneration, proliferations and root induction were taken placed on studied media, after 35 days without sub-culturing. The highest rate of proliferation with 200 shoots per explant was observed on B5 medium, containing100 mg l-1 cefotaxime and 1.0 mg l-1 BAP.  Callus induction and proliferations were observed in all media containing 100 mg l-1 cefotaxime that can be related to auxin like activity of cefotaxime in fennel tissue culture.

Keywords

[1]     Afify, A.E.-M.M.R., El-Beltagi, H.S., Hammama, A.A.E.-A., Sidky, M.M., and Mostafa, O.F.A. 2011. Distribution of trans-anethole and estragole in fennel (Foeniculum vulgare Mill) of callus induced from different seedling parts and fruits. Notulae Scientia Biologicae, 3(1): 79.
[2]     Ahmadi, B., Shariatpanahi, M.E., Ojaghkandi, M.A., and Heydari, A.A. 2014. Improved microspore embryogenesis induction and plantlet regeneration using putrescine, cefotaxime and vancomycin in Brassica napus L. Plant Cell, Tissue and Organ Culture (PCTOC), 118(3): 497-505.
[3]     Andrade, L., Echeverrigaray, S., Fracaro, F., Pauletti, G., and Rota, L. 1999. The effect of growth regulators on shoot propagation and rooting of common lavender (Lavandula vera DC). Plant cell, tissue and organ culture, 56(2): 79-83.
[4]     Anzidei, M., Bennici, A., Schiff, S., Tani, C., and Mori, B. 2000. Organogenesis and somatic embryogenesis in Foeniculum vulgare: histological observations of developing embryogenic callus. Plant cell, tissue and organ culture, 61(1): 69-79.
[5]     Bahmani, K., Izadi-Darbandi, A., Jafari, A.A., Noori, S.A.S., and Farajpour, M. 2012. Assessment of genetic diversity in Iranian fennels using ISSR markers. Journal of Agricultural Science, 4(9): 79.
[6]     Bailey, M., Boerma, H., and Parrott, W. 1993. Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cellular & Developmental Biology-Plant, 29(3): 102-108.
[7]     Bennici, A., Anzidei, M., and Vendramin, G.G. 2004. Genetic stability and uniformity of Foeniculum vulgare Mill. regenerated plants through organogenesis and somatic embryogenesis. Plant science, 166(1): 221-227.
[8]     Bhatia, P., Ashwath, N., Senaratna, T., and Midmore, D. 2004. Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell, Tissue and Organ Culture, 78(1): 1-21.
[9]     Bhau, B. and Wakhlu, A. 2001. Effect of some antibiotics on the in vitro morphogenetic response from callus cultures of Coryphantha elephantidens. Biologia Plantarum, 44(1): 19-24.
[10]  Borrelli, G., Di Fonzo, N., and Lupotto, E. 1992. Effect of cefotaxime on callus culture and plant regeneration in durum wheat. Journal of plant physiology, 140(3): 372-374.
[11]  Danilova, S. and Dolgikh, Y.I. 2004. The stimulatory effect of the antibiotic cefotaxime on plant regeneration in maize tissue culture. Russian Journal of Plant Physiology, 51(4): 559-562.
[12]  Du Manoir, J., Desmarest, P., and Saussay, R. 1985. In vitro propagation of fennel (Foeniculum vulgare Miller). Scientia horticulturae, 27(1-2): 15-19.
[13]  Ebrahimie, E., Habashi, A., Ghareyazie, B., Ghannadha, M., and Mohammadie, M. 2003. A rapid and efficient method for regeneration of plantlets from embryo explants of cumin (Cuminum cyminum). Plant cell, tissue and organ culture, 75(1): 19-25.
[14]  Filippov, M., Miroshnichenko, D., Vernikovskaya, D., and Dolgov, S. 2006. The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat. Plant cell, tissue and organ culture, 84(2): 100192-100201.
[15]  Fiore, M.C., Carimi, F., Carra, A., and Sunseri, F. 2012. Efficient plant regeneration via somatic embryogenesis in bulbing fennel using immature flower explants. In Vitro Cellular & Developmental Biology-Plant, 48(5): 440-445.
[16]  Gamborg, O.L.c., Miller, R.A., and Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental cell research, 50(1): 151-158.
[17]  George, L., Eapen, S., and Rao, P. 1993. Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and cefotaxime. Plant Cell, Tissue and Organ Culture, 32(1): 91-96.
[18]  Graifenberg, A., Botrini, L., Giustiniani, L., and Di Paola, M.L. 1996. Salinity affects growth, yield and elemental concentration of fennel. HortScience, 31(7): 1131-1134.
[19]  Grzebelus, E. and Skop, L. 2014. Effect of β-lactam antibiotics on plant regeneration in carrot protoplast cultures. In Vitro Cellular & Developmental Biology-Plant, 50(5): 568-575.
[20]  Holford, P. and Newbury, H. 1992. The effects of antibiotics and their breakdown products on the in vitro growth of Antirrhinum majus. Plant Cell Reports, 11(2): 93-96.
[21]  Hunault, G. 1984. In vitro culture of fennel tissues (Foeniculum vulgare Miller) from cell suspension to mature plant. Scientia horticulturae, 22(1-2): 55-65.
[22]  Hunault, G., Desmarest, P., and Du Manoir, J. 1989. Foeniculum vulgare Miller: Cell culture, regeneration, and the production of anethole, in Medicinal and Aromatic Plants II. Springer. p. 185-212.
[23]  Hunault, G. and Du Manoir, J. 1992. Micropropagation of fennel (Foeniculum vulgare Miller), in High-Tech and Micropropagation III. Springer. p. 199-217.
[24]  Hunault, G. and Maatar, A. 1995. Enhancement of somatic embryogenesis frequency by gibberellic acid in fennel. Plant cell, tissue and organ culture, 41(2): 171-176.
[25]  Mahfouz, S. and Sharaf-Eldin, M. 2007. Effect of mineral vs. biofertilizer on growth, yield, and essential oil content of fennel (Foeniculum vulgare Mill.). International Agrophysics, 21(4): 361.
[26]  Makunga, N.P., Jäger, A.K., and van Staden, J. 2005. An improved system for the in vitro regeneration of Thapsia garganica via direct organogenesis–influence of auxins and cytokinins. Plant cell, tissue and organ culture, 82(3): 271-280.
[27]  Martin, K. 2004. Efficacy of different growth regulators at different stages of somatic embryogenesis in Eryngium foetidum L.–a rare medicinal plant. In Vitro Cellular and Developmental Biology-Plant, 40(5): 459-463.
[28]  Mathias, R. and Mukasa, C. 1987. The effect of cefotaxime on the growth and regeneration of callus from four varieties of barley (Hordeum vulgare L.). Plant Cell Reports, 6(6): 454-457.
[29]  Mittal, P., Gosal, S.S., Senger, A., and Kumar, P. 2009. Impact of cefotaxime on somatic embryogenesis and shoot regeneration in sugarcane. Physiology and Molecular Biology of Plants, 15(3): 257-265.
[30]  Mohamed, M.A. and Abdu, M. 2004. Growth and oil production of fennel (Foeniculum vulgare Mill): effect of irrigation and organic fertilization. Biological agriculture & horticulture, 22(1): 31-39.
[31]  Naing, A.H., Kim, C.K., Yun, B.J., Jin, J.Y., and Lim, K.B. 2013. Primary and secondary somatic embryogenesis in Chrysanthemum cv. Euro. Plant Cell, Tissue and Organ Culture (PCTOC), 112(3): 361-368.
[32]  Nakano, M. and Mii, M. 1993. Antibiotics stimulate somatic embryogenesis without plant growth in several Dianthus cultivars. Journal of plant physiology, 141(6): 721-725.
[33]  Nalawade, S.M. and Tsay, H.-S. 2004. In vitro propagation of some important Chinese medicinal plants and their sustainable usage. In Vitro Cellular and Developmental Biology-Plant, 40(2): 143-154.
[34]  Nauerby, B., Billing, K., and Wyndaele, R. 1997. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Science, 123(1-2): 169-177.
[35]  Olle, M., Bender, I., and Koppe, R. 2010. The content of oils in umbelliferous crops and its formation. Agronomy Research, 8(3): 687-696.
[36]  Panathula, C.S., Mahadev, M.D.N., and Naidu, C.V. 2014. The stimulatory effects of the antimicrobial agents bavistin, cefotaxime and kanamycin on in vitro plant regeneration of Centella asiatica (L.)—an important antijaundice medicinal plant. American Journal of Plant Sciences, 5(03): 279.
[37]  Pandey, S., Mishra, A., Patel, M.K., and Jha, B. 2013. An efficient method for Agrobacterium-mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.). Applied biochemistry and biotechnology, 171(1): 1-9.
[38]  Rakosy-Tican, E., Aurori, C., and Aurori, A. 2011. The effects of cefotaxime and silver thiosulphate on in vitro culture of Solanum chacoense. Romanian Biotechnological Letters, 16(4): 6369-6377.
[39]  Sarma, K., Evans, N.E., and Selby, C. 1995. Effect of carbenicillin and cefotaxime on somatic embryogenesis of Sitka spruce (Picea sitchensis (Bong.) Carr.). Journal of Experimental Botany, 46(11): 1779-1781.
[40]  Silva, J.d. and Fukai, S. 2001. The impact of carbenicillin, cefotaxime and vancomycin on chrysanthemum and tobacco TCL morphogenesis and Agrobacterium growth. J. Appl. Hort, 3(1): 3-12.
[41]  Sujana, P. and Naidu, C. 2011. Influence of Bavistin, Cefotaxime, Kanamycin and Silver Thiosulphate on Plant Regeneration of Mentha piperita (L.) –An Important Multipurpose Medicinal Plant. Journal of Phytology, 3(5).
[42]  Tang, H., Ren, Z., and Krczal, G. 2000. An evaluation of antibiotics for the elimination of Agrobacterium tumefaciens from walnut somatic embryos and for the effects on the proliferation of somatic embryos and regeneration of transgenic plants. Plant Cell Reports, 19(9): 881-887.
[43]  Tawfik, A.A. and Noga, G. 2001. Adventitious shoot proliferation from hypocotyl and internodal stem explants of cumin. Plant cell, tissue and organ culture, 66(2): 141-147.
[44]  Tawfik, A.A. and Noga, G. 2002. Cumin regeneration from seedling derived embryogenic callus in response to amended kinetin. Plant cell, tissue and organ culture, 69(1): 35-40.
[45]  Telci, I., Demirtas, I., and Sahin, A. 2009. Variation in plant properties and essential oil composition of sweet fennel (Foeniculum vulgare Mill.) fruits during stages of maturity. Industrial Crops and Products, 30(1): 126-130.
[46]  Vlizadeh, M., Safarnejad, A., Nematzadeh, G., and Kazemitabar, S. 2006. Regeneration of plantlets from embryo explants of Bunium persicum (Boiss.) B. Fedtsch. Indian J. Crop Science, 1(1-2): 93-96.
[47]  Wakhlu, A. and Sharma, R. 1999. Micropropagation of Heracleum candicans Wall: a rare medicinal herb. In Vitro Cellular & Developmental Biology-Plant, 35(1): 79-81.
[48]  Yu, Y. and Wei, Z.-M. 2008. Influences of cefotaxime and carbenicillin on plant regeneration from wheat mature embryos. Biologia plantarum, 52(3): 553-556.
[49]  Zhang, F.-L., Takahata, Y., and Xu, J.-B. 1998. Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Reports, 17(10): 780-786.
[50]  Zhang, W.-J., Dong, J.-L., Liang, B.-G., Jin, Y.-S., and Wang, T. 2006. Highly efficient embryogenesis and plant regeneration of tall fescue (Festuca arundinacea Schreb.) from mature seed-derived calli. In Vitro Cellular and Developmental Biology-Plant, 42(2): 114-118.
Volume 5, Issue 2
December 2017
Pages 11-19
  • Receive Date: 14 January 2018
  • Revise Date: 11 May 2018
  • Accept Date: 17 June 2018
  • First Publish Date: 17 June 2018